Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.30.21259761

ABSTRACT

ABSTRACT Emergence of SARS-CoV-2 with high transmission and immune evasion potential, the so-called Variants of Concern (VOC), is a major concern. We describe the early genomic epidemiology of SARS-CoV-2 recovered from vaccinated healthcare professionals (HCP). Our post-vaccination COVID-19 symptoms-based surveillance program among HCPs in a 17-hospital network, identified all vaccinated HCP who tested positive for COVID-19 after routine screening or after self-reporting. From 01/01/2021 to 04/30/2021, 23,687 HCP received either mRNA-1273 or BNT162b2 mRNA vaccine. All available post-vaccination SARS-CoV-2 samples and a random collection from non-vaccinated patients during the similar timeframe were subjected to VOC screening and whole genome sequencing (WGS). 62% (23,697/37,500) of HCPs received at least one vaccine dose, with 95% (22,458) fully vaccinated. We detected 138 (0.58%, 138/23,697) COVID-19 cases, 105 among partially vaccinated and 33 (0.15%, 33/22,458) among fully vaccinated. Five partially vaccinated required hospitalization, four with supplemental oxygen. VOC screening from 16 fully vaccinated HCPs identified 6 (38%) harboring N501Y and 1 (6%) with E484K polymorphisms; concurrent non-vaccinated samples was 37% (523/1404) and 20% (284/1394), respectively. There was an upward trend from January to April for E484K/Q (3% to 26%) and N501Y (1% to 49%). WGS analysis from vaccinated and non-vaccinated individuals indicated highly congruent phylogenies. We did not detect an increased frequency of any RBD/NTD polymorphism between groups (P>0.05). Our results support robust protection by vaccination, particularly among recipients of both doses. Despite VOCs accounting for over 40% of SARS-CoV-2 from fully vaccinated individuals, the genomic diversity appears to proportionally represent those among non-vaccinated populations. IMPORTANCE A number of highly effective vaccines have been developed and deployed to combat the COVID-19 pandemic. The emergence and epidemiological dominance of SARS-CoV-2 mutants, with high transmission potential and immune evasion properties, the so-called Variants of Concern (VOC), continues to be a major concern. Whether these VOCs alter the efficacy of the administered vaccines is of great concern, and a critical question to study. We describe the initial genomic epidemiology of SARS-CoV-2 recovered from vaccinated healthcare professionals and probe specifically for VOC enrichment. Our findings support the high-level of protection provided by full vaccination despite a steep increase in the prevalence of polymorphisms associated with increased transmission potential (N501Y) and immune evasion (E484K) in the non-vaccinated population. Thus, we do not find evidence of VOC enrichment among vaccinated groups. Overall, the genomic diversity of SARS-CoV-2 recovered post-vaccination appears to proportionally represent the observed viral diversity within the community.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.08.434433

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, evident as a function of varying viral load (high vs. low) during the course of infection and specific, transcriptional dysregulation in splicing isoforms, T cell receptor expression, and cellular expression states. In particular, cardiac and lung tissues revealed the largest degree of splicing isoform switching and cell expression state loss. Overall, these findings reveal a systemic disruption of cellular and transcriptional pathways from COVID-19 across all tissues, which can inform subsequent studies to combat the mortality of COVID-19, as well to better understand the molecular dynamics of lethal SARS-CoV-2 infection and other viruses.


Subject(s)
Lung Diseases , Respiratory Distress Syndrome , Severe Acute Respiratory Syndrome , Chronobiology Disorders , COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.09.034454

ABSTRACT

Coronavirus disease 2019 (COVID-19) outcomes vary from asymptomatic infection to death. This disparity may reflect different airway levels of the SARS-CoV-2 receptor, ACE2, and the spike protein activator, TMPRSS2. Here we explore the role of genetics and co-expression networks in regulating these genes in the airway, through the analysis of nasal airway transcriptome data from 695 children. We identify expression quantitative trait loci (eQTL) for both ACE2 and TMPRSS2, that vary in frequency across world populations. Importantly, we find TMPRSS2 is part of a mucus secretory network, highly upregulated by T2 inflammation through the action of interleukin-13, and that interferon response to respiratory viruses highly upregulates ACE2 expression. Finally, we define airway responses to coronavirus infections in children, finding that these infections upregulate IL6 while also stimulating a more pronounced cytotoxic immune response relative to other respiratory viruses. Our results reveal mechanisms likely influencing SARS-CoV-2 infectivity and COVID-19 clinical outcomes.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Inflammation , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL